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Abstract
Urinary tract infection is the most common infection in almost half of the renal transplant patients. The development of UTI 
in these patients may progress to bacteremia, acute T cell-mediated rejection, impaired allograft function, or allograft loss, 
along with the increased risk of hospitalization and death. Among various pathogens implicated, Uropathogenic E. coli 
(UPEC), especially sequence type 131 (ST131), is the most virulent and multidrug-resistant pathogen. High antimicrobial 
resistance to most β-lactam antibiotics, mediated by extended spectrum β-lactamases (ESBLs) produced by UPEC, is a chal-
lenge in the clinical management of UTIs in kidney transplant recipients. Indeed, multidrug resistance to β-lactam antibiotics 
is a direct consequence of ESBL production. Resistance to other antibiotics such as aminoglycosides, fluoroquinolones, and 
trimethoprim-sulphamethoxazole has also been reported in ESBLs-producing UPEC, which reduces the therapeutic options, 
rising healthcare-associated costs and subsequently leads to renal failure or even graft loss. In this review, we aimed to discuss 
the post-transplant risk factors of UTI, UPEC virulence factors (VF), and the related factors including quorum sensing, and 
stress resistance genes. Furthermore, we searched for the current treatment strategies and some of the alternate approaches 
proposed as therapeutic options that may affirm the treatment of ESBL-producing UPEC.

Introduction

Renal transplantation is a promising therapeutic strategy 
for the treatment of patients with end-stage renal disease 
to build on the quality of life [1, 2]. Despite significant 
advances in organ transplantation, post-transplant urinary 
tract infections (UTIs), which may range from asymptomatic 

bacteriuria to acute cystitis and pyelonephritis, are still 
major cause of morbidity and mortality in these recipients 
[3]. There is considerable variation in the reported inci-
dences of post-transplant UTI that might be due to local 
outbreaks, differing resistance rates, antibiotic strategies, 
and diagnostic criteria. UTIs occur more often in female 
than in male renal transplant recipients [4]. Most of the UTIs 
(74%) have been reported during the first year after kidney 
transplantation (81.9%), within the first 3 months after sur-
gery [5]. Although the risk time for the development of UTI 
decreases as time passes, however, the recipients do face 
recurrent infections [6]. Transplantation of kidneys from 
living donors potentially leads to lower rates of UTI, prob-
ably due to shorter periods of cold ischemia, less severe 
ischemic-reperfusion injury, and a lower rate of delayed 
graft function while transplantation from deceased donors 
increases the incidence of postoperative UTI [4] which may 
be because of greater injury of the renal allograft or the 
routine cytotoxic agents used during cadaveric organ trans-
plantation [3]. Uropathogenic Escherichia coli (UPEC) is 
a common etiology of UTIs among transplant recipients 
[3]. The UTI is managed and controlled with antibiotics 
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nevertheless, and the emergence of multidrug resistance 
has become a continued and deep concern. As cephalo-
sporins are prescribed for the treatment of UTI caused by 
Enterobacteriaceae, the organism should be considered for 
ESBL production as well as carbapenem resistance when 
evaluating renal transplant recipients with recurrent UTIs 
[7]. Longer duration of catheterization, immunosuppression, 
diabetes mellitus, and manipulation of the urinary tract are 
some of the other important risk factors for UTI after kidney 
transplantation. This review aimed to discuss the characteri-
zation of UPEC, the epidemiology of urinary tract infections 
developed in renal transplant recipients, its consequences, 
and the pathogenesis. As renal transplant patients are immu-
nosuppressed, we also attempted to identify and appraise the 
issue of antibiotic resistance in UPEC especially, extended 
spectrum beta-lactamases (ESBLs) production, which is a 
major concern.

UTI in Renal Transplant Recipients

Renal transplant recipients are at risk of developing UTIs 
[8] which if not treated or partially treated may progress 
to bacteremia, sepsis, and pyelonephritis [9]. UTIs in such 
patients are important since they present a potential risk for 
poorer graft and recipient outcomes [10]. Other subsequent 
complications of UTIs in transplant recipients consist of 
chronic functional impairment, potential drug interactions, 
and bacterial resistance that may influence long-term graft 
survival leading to death [11]. Indeed, in renal transplant 
recipients, infections are the second most prevalent cause of 
death, though UTIs have not been directly associated with 
increasing mortality [3]. UTIs are the most common cause 
of acute kidney allograft injury [8]. The prevalence of renal 
disorders caused by infections is more than acute rejection 
and calcineurin inhibitor (CNI) toxicity [8]. CNI especially 
cyclosporin A (CsA) and tacrolimus are widely used in 
solid organ transplants to prevent graft rejection and to treat 
immune-mediated glomerular diseases [12]. On the other 
hand, CNIs lead to the excretion of Mg2+ from the kidneys 
by reducing the regulation of transport proteins in the renal 
tubules, and as a result, hypomagnesemia occurs in kidney 
transplant recipients [13]. Due to the important role of Mg2+ 
in the human body, including the control of the immune 
system, studies have shown that Mg2+ deficiency is inde-
pendently associated with urinary tract infections and viral 
infections in the early stages after kidney transplant [13].

Asymptomatic UTIs account for 17–51% of infections in 
kidney transplant patients (KTP), and it is a threat to subse-
quent urinary tract infection [14]. while UTIs happen in the 
first 3 months after the transplant and are frequently associ-
ated with pyelonephritis and bacteremia, compared to less 
severe infections that happen later [15].

UTI accounts for 30% of all hospitalizations in renal 
transplant patients in the world [16]. As a general anatomi-
cal rule, women who undergo renal transplants are more 
prone to attain UTI [14]. Old age, especially higher than 
65 years of age, is also a risk factor for developing UTIs in 
pre-transplant patients due to sedentary life, poor hygiene, 
increased urinary retention in the bladder, prostate, and/or 
bladder atrophy, and a decrease in immunity [3]. Table 1 
reveals other risk factors for urinary tract infections in renal 
transplant patients.

Pathogenesis of Uropathogenic Escherichia 
coli (UPEC)

UPEC strains display a notable proficiency in hosting a wide 
range of virulence components (Table 2) thereby increasing 
their aptitude to adapt to new niches, invade host tissues, 
and colonize them, escape the host immune response, uptake 
the nutrients from the host, and eventually result into the 
disease [17].

The bacterium utilizes multinuclear superficial facet 
cells that encompass integral membrane proteins called 
uroplakins to its advantage [18]. These uroplakins act as a 
barrier to uroepithelium, in addition to acting as receptors 
(Ia and IIIa receptors) for protein Fim H, the tip adhesion 
of UPEC type 1 fimbriae [19]. This binding induces actin 
rearrangement and bacterial internalization via unknown 
signaling pathways. Some of these strains utilize uroplakin-
independent invasion pathways by binding protein Fim H to 
mannosylated α3β integrins. Moreover, intracellular bacte-
rial communities (IBCs) or pods form into superficial facet 
cells through the binding of type 1 pili to α3β1 integrins 
which are shown in Fig. 1 [20].

Pore-forming hemolysin A (HlyA) toxin inhibits the 
activation of Protein kinase B or Akt protein ultimately 
triggering host cell apoptosis and exfoliation, lysis of host 
cell through pore formation, facilitation of iron release, and 
nutrient uptake [20]. Exfoliation exposes the underlying 
transition cells to promote the UPEC invasion, thereby expe-
diting the inhabitation of these cells by bacteria and forming 
quiescent intracellular reservoirs (QIRs) that be the cause of 
recurrent infection (Fig. 1) [20].

Pathogenicity islands (PAI) markers are widespread 
among commensal E. coli and UPEC isolates, and it is said 
that these commensal isolates may be reservoirs for trans-
mission of these markers [21]. Indeed, major virulence fac-
tors of UPEC and their regulators usually are encoded by 
PAIs, and the difference in the type of PAIs is postulated 
to affect the antibiotic susceptibility pattern of the bacte-
ria [22]. In a study aimed at investigating the relationship 
between the phylogenetic groups, virulence factors, and 
PAIs among UPEC in Iran, significant association between 
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the phylogenetic group B2 and all the studied virulence 
genes and PAI markers was found [21]. Another investi-
gating study on the UPEC isolates showed that Fim-like 
recombinase gene fimX is the only family member that has a 
significant association with UPEC compared to commensal 
isolates and PAI-X genes are highly prevalent among UPEC 
isolates and have a strong positive correlation with genomic 
virulence factors, suggesting a potential role for PAI-X in the 
extraintestinal pathogenic E. coli lifestyle [23].

UPEC Biofilm and the Associated Factors

UPEC forms multicellular communities known as biofilms 
on urinary catheters, as well as on and within bladder epithe-
lial cells [24]. Indeed biofilm is a major contributing factor 
in the development of UTIs by UPEC [25]. Bacterial bio-
films are damaged by the destruction of natural barriers like 
the urethral sphincter and, thus, provide a nidus for infection 
[26].

Different adhesion factor genes (AFGs) are involved in 
the attachment of bacterial cells to the urinary tract and bio-
film development [27]. Integration host factor (IHF) protein 

of DNABII present in the bacterial biofilm not only affects 
biofilm formation in vitro but also the community architec-
ture of UPEC in vivo along with regulation of expression 
of several genes associated with virulence such as Type I 
pilus, P pilus, and capsule [28]. UPEC uses pilus-mediated 
adherence to initiate biofilm formation in the urinary tract. 
Oxygen gradients within E. coli biofilms regulate the expres-
sion and localization of adhesive type 1 pilus. A transpo-
son mutant screen for strains defective in biofilm formation 
identified the ubiI (formerly visC), the aerobic ubiquinone 
synthase as a critical gene for UPEC biofilm formation [29]. 
People with chronic kidney diseases are at higher risk for 
biofilm formation due to the existence of kidney stones, 
peritoneal catheters, and hemodialysis interventions [30]. 
Similar to biofilm formed by other bacteria, in the UPEC 
biofilm formation process, initial attachment is the main step 
because the survival of any microorganism is determined by 
its ability to bind complex environment [31]. Type 1 fim-
briae or pili encoded by the fim gene are among the most 
important virulence factors attached to abiotic surfaces [32].

Attachment to the surface causes the adhered UPEC cells 
as initially as sessile and flagella repress reconversion from 
a sessile state with the help of several small molecules such 

Table 1   Risk factors for urinary 
tract infection at various 
transplant levels

Transplant level risk associ-
ated with UTI development

References

Pre-transplant Advanced age [3]
Female gender [3]
Diabetes mellitus [80]
Prolonged dialysis [80]
Polycystic kidney disease [80]
Pre-transplant urinary infection [80]

Transplant procedure Deceased donor [80]
Allograft trauma [80]
Microbial contamination of cadaver kidney [80]
Technical complications with anastomosis [80]
Postoperative bladder catheterization [80]
Ureteral stent [80]

Post-transplant Urinary tract obstruction [3]
Uremia/poor graft function [15]
Bladder dysfunction [15]
Increased urinary aluminum secretion [15]
Immunosuppressive therapy [especially azathioprine (imuran)] [3]
Vesicoureteral reflux [80]
Reimplantation [80]
Acute rejection episodes (ARE) [80]
Cytomegalovirus (CMV) infections [8]
Malnutrition [81]
Percutaneous nephrostomy (PNC) placement < 3 months after 

KT (kidney transplantation)
[82]

Surgical re-intervention < 3 months after KT [82]
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as cyclic diguanylic acid (c-di-GMP), the concentration 
of which later rises during biofilm formation comparative 
to the planktonic state of bacteria. Type 1 fimbriae or pili 
encoded by the fim gene and curli fimbriae are important in 
the irreversible adhesion of UPEC to the surface [32] and 
autotransporters, extracellular polymeric substances, quo-
rum sensing, and stress resistance genes are important for 
biofilm maturation [32].

Autotransporters

Antigen 43 (Ag43) is the key autotransporter protein that 
promotes cell-to-cell adhesion, auto-aggregation, and three-
dimensional development of biofilm structure [33]. Some 
transporter proteins (AidA and TibA) also promote biofilm 
formation and aggregation [33]. In most E. coli pathotypes, 

including UPEC, Ag43 causes strong aggregation and bio-
film formation. Published literature shows that in UPEC 
strain UTI89, the autotransporter is associated with intra-
cellular bacterial community formation similar to biofilms 
and contributes to chronic urinary tract infection [34].

Extracellular Polymeric Substance (EPS)

EPS similar to other biofilms is responsible for providing 
cell-to-cell and cell-to-surface interactions, and three-dimen-
sional architecture, thereby supporting the biofilm cells 
[33]. There are three major exopolysaccharides including 
polymeric β-1, 6-N-acetyl-d-glucosamine (PGA) (mediating 
cell-to-cell adhesion, attachment to surfaces, and stabilizing 
the biofilm), cellulose (for rigid biofilm formation), and col-
anic acid (for protection of biofilm cells from environmental 

Table 2   UPEC allied virulence factors, associated genes, and their respective functions

Virulence factors Virulence genes Functions References

Type 1 fimbriae fim UPEC adhesion, binds to uroplakin and α3β1 integrins, form intracellular bac-
terial communities (IBCs) and bacterial survival, promote invasion, colonize 
in extraintestinal infections, biofilm formation, induce mucosal inflammation

[83–85]

P fimbriae Pap Adhesion and colonization in extraintestinal infections on the tubular epithe-
lium, stimulate cytokine expression by T lymphocytes

[83–85]

S fimbriae sfa Adhesion to intestinal epithelial cells, kidney, and lower urinary tract cells; 
facilitate the penetration of bacteria into the tissues

[83, 84]

F1C fimbriae foc Adhesion to renal epithelial and endothelial cells of the bladder and kidneys [83, 84]
Dr fimbriae dra Binding to the decay-accelerating factor (DAF) receptor on the surface epithe-

lial cells, internalize bacteria to the host cells, activates PI-3-kinase
[83, 84]

Afimbrial adhesion afa The non-fibrous adhesion, binding to the DAF receptor on the cell surface 
epithelium, hemagglutination capacity

[83, 84]

Capsule kps Protect the bacterium against phagocytic and host immune system, engulfment 
and bactericidal effect

[85]

lipopolysaccharide (LPS) rf Inducing cytokine expression through nitric oxide and activation of proinflam-
matory response in uncomplicated UTIs

[85]

Flagella protein H antigen flic Invasion, responsible for bacterial motility, the interaction of various patho-
genic E. coli strains with epithelial cells, facilitated dissemination, chemot-
axis

[85]

Iha iha Iron‐regulated‐gene‐homologue adhesion [83]
Curli fimbriae crl, csg Adhesin, binding to fibronectin, biofilm formation, and promote pathogenicity [83]
Secreted Hemolysin A hlyA Pore-forming toxin, cell lysis, hemolysis, inflammation of human’s urothelial 

cells
[83]

Cytotoxic necrotizing factor1 cnf Invasion, malfunction, apoptosis in human’s urothelial cells, engaging in cell 
necrosis

[83]

Vacuolating autotransporter toxin Vat The proteolytic toxin, Inducing host cell vacuolization [83]
Secreted autotransporter toxin sat The proteolytic toxin, cytotoxic effect on cell vacuolization [83]
Serin protease autotransporter pic Destroy mucins, facilitating colonization on the epithelium and injury of the 

cell membrane
[83]

UpaH upaH Contributing to bacterial adherence, colonization, and biofilm formation [85]
SitABC sitA, B, C Transportation of Fe, Mn [83]
ChuA, Hma chu, hma Iron acquisition from hemoglobin, heme transport [83]
Salmochelin iroN Siderophore receptor, iron acquisition [83]
Aerobactin iuc,aer Siderophore, iron acquisition (Fe2+/3+) [83]
Antigen43 flu Autotransporter family protein, adhesion, and biofilm development [83]
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conditions), having an effect on biofilm formation by cover-
ing Antigen 43 and adhesin involved in diffuse adherence 
(AidA) proteins [33]. The E. coli AIDA-I or AidA autotrans-
porter adhesin, as a prototype of the AIDA adhesin family, 
represents a tripartite antigen consisting of the functional 
adhesin AIDA-I (alpha-domain), which mediates the spe-
cific attachment of bacteria to target cells [35]. The AIDA-
I protein is one of the few glycosylated proteins found in 
the organism. O-glycosylation is mediated by the product 
of the aah gene, which codes for a heptosyltransferase that 
uses ADP-glycero-manno-heptose precursors from the LPS 
biosynthesis pathway [36]. Little else is known about aah 
and the mechanisms involved in the modification of AIDA-I 
[36]. Lipopolysaccharides and capsules are also important 
factors in the biofilm formation of E. coli [37].

Quorum Sensing (QS)

QS, the ability of bacterial cell population to respond to the 
signaling response [38], occurs in UPEC, with the intervention 
of acyl-homoserine lactone (AHL) and autoinducer-2 (AI-2). 

The structure of AHLs consists of a core N-acyl-homoserine-
lactone ring and a 4–18 carbon acyl chain that enables them 
to spread freely across the cell membrane [39]. AI-2 is a 4, 
5-dihydroxy-2,3-pentandione (DPD)-derived molecule [40] 
and has been shown that its production is directly related to 
biofilm production in E. coli [41].

Stress Resistance Genes

During the formation of the UPEC biofilm, various stress 
resistance genes protect the biofilm in unfavorable environ-
mental conditions such as low pH of the stomach, heat, per-
oxide, and cadmium [33]. Table 3 shows the stress resistance 
and the other genes involved in biofilm formation.

Bacterial biofilms show more resistance to antimicrobial 
stress in comparison to planktonic populations [30]. Poor 
penetration of antimicrobials or antiseptic solutions into and 
through biofilm due to anaerobiosis, deeper and dense biofilm 
layers, slow growth rate, altered metabolism, persister cells, 
oxygen gradients, and extracellular biofilm matrix, lead to anti-
biotic tolerance mechanisms in biofilms [30, 42].

Fig. 1   Pathogenesis of uropathogenic Escherichia coli (UPEC). 
UPEC adheres to uroepithelium cells through type 1 pili, which bind 
to uroplakin Ia and IIIa receptors. This binding mediates invasion 
and apoptosis through stimulation of unknown signaling pathways. 
Binding of type 1 pili to α3β1 integrins induces actin rearrangement 
through activation of RAC proteins (RHO-family GTPases), result-
ing in the invasion of bacteria. Binding of type 1 pili to α3β1 integ-

rins also induces bacteria internalization into superficial facet cells to 
form intracellular bacterial communities (IBCs) or pods. Pore-form-
ing hemolysin A (HlyA) toxin can inhibit the activation of Protein 
kinase B or Akt protein and lead to host cell inflammation, apoptosis 
and exfoliation. Exfoliation of the uroepithelium promotes the spread 
of UPEC to other hosts following urine excretion or to expose deeper 
layers of the uroepithelium for QIRs [20]
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Antibiotic Resistance

In general, antibiotic resistance means an increase in the 
minimum inhibitory concentration (MIC) of an antibiotic on 
account of many phenotypic and genetic factors associated 
with antimicrobial resistance in the bacteria [42]. Routine 
peri-transplant antimicrobial prophylaxis or excessive and 
inappropriate use of antibiotics may all promote the develop-
ment of multi-drug-resistant (MDR) and ESBL-producing 
UPEC strains [6, 43]. The current therapeutic view shows 
that the phenomenon of MDR is on the rise in urinary patho-
gens worldwide [44]. It is not only a threat for immunocom-
promised patients but also a challenge for clinicians [44]. A 
previous study showed that in kidney transplant recipients, 
69.1% of MDR isolates accounted for symptomatic UTIs 
[45]. Few antibiotics are available to treat infections caused 
by these pathogens, and those that can be prescribed are 

mostly for parenteral administration and carry a higher risk 
of adverse effects. Moreover, infections caused by MDR 
organisms are often associated with severe outcomes [44]. 
These organisms have many risk factors including prior use 
of antimicrobials without the antibiotic susceptibility testing 
being performed, hospitalization, genitourinary disorders, 
age, and recurrent UTIs [46].

Extended Spectrum β‑Lactamases (ESBLs) 
in UPEC

In kidney transplant patients (KTPs), UTIs and high anti-
microbial resistance of extended spectrum β-lactamases 
(ESBL)-producing UPEC are one of the most important 
therapeutic and epidemiological challenges. Alevizakos 
et al. [47] reported that 1 in 10 renal transplant recipients 

Table 3   UPEC-related genes and proteins involved in biofilm formation and their respective function

Name of the gene Protein synthesized Function References

fim Type1 fimbriae or pili Initial attachment to abiotic surfaces and initial devel-
opment of biofilm

[85]

Chaperone-usher 
class fimbrial 
genes: c

F9 fimbriae Adhesion and biofilm formation [85]

csg Curli fimbriae Attachment to the extracellular matrix proteins of 
the, adhesion to abiotic surfaces by enhancing the 
cell-to-surface interaction, and facilitating the cell-
to-cell communication

[85]

flu Antigen 43 (Ag43) Adhesion, facilitating auto-aggregation and three-
dimensional development

[33]

pgaABCD Pga C glycosyltransferase Synthesis, export, and localization of the b-1, 
6-N-acetyl-d-glucosamine polymer (PGA) polymer, 
biofilm formation, and stabilization

[33]

bcsABZC Cellulose synthase protein BcsA Rigid biofilm formation [33]
sdiA SdiA Upregulating uvrY and csrA genes which enhance the 

biofilm formation, motility, and virulence of E. coli
[33]

sisA(c3557) SisA Suppression of the host immune system during 
UTIs by down-regulating the innate inflammatory 
response

[86]

sisB (c4492) SisB
hfq Hfq Biofilms formation in the harsh environment of the 

urinary tract
[33]

ycfR YcfR/BhsA Stimulation indole production by BhsA makes biofilm 
resistant to acid, heat, peroxide, and cadmium

[33]

ymgB AriR Causing acid resistance and survival in low pH [33]
rpoS RNA polymerase Sigma factor RpoS

Sigma S encoding factor, a stress-related gene regula-
tor

[33]

rapA RNA polymerase-associated protein RapA Increase biofilm antibiotic resistance, alteration gene 
regulation in biofilm

[33]

yhcQ P-hydroxybenzoic acid efflux pump subunit AaeA Encoding a multidrug resistance pump [33]
yafQ mRNA interferase YafQ Increase of Escherichia coli biofilms tolerance to 

specific antibiotics
[33]
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get infected with a UTI from an ESBL-producing Enterobac-
teriaceae. ESBL-producing UPEC strains have a significant 
disadvantageous effect on the clinical management of UTIs 
in these patients. ESBL-producing E. coli reduces therapeu-
tic options and is associated with rising healthcare-associ-
ated costs, morbidity, and mortality rates [48, 49]. The infec-
tion can cause subsequent renal failure or even transplant 
loss [50]. ESBL-producing bacteria are difficult to eradicate, 
requiring prolonged intravenous, broad-spectrum antibiotic 
therapy [51]. KTP recipients display many risk factors for 
UTI and are considered a particularly vulnerable population 
to such infections. Published literature evaluated risk fac-
tors for UTI in community infections and healthcare settings 
[52–54]. The high incidence of ESBL-positive infections 
among KTPs recipients with diabetes mellitus and those who 
received previous antimicrobial therapy were reported by 
others [55].

When ESBL-producing UPEC among Iranian KTP 
recipients were characterized, it was found that most UPEC 
isolates were significantly more frequent in KTP recipi-
ents compared with the non-KTPs group (43.5% vs 23.1%, 
P = 0.021), and the molecular results revealed that among 
ESBL coding genes, blaCTX-M and blaTEM were significantly 
higher among KTP recipients than the non-KTPs group 
[6]. The same group of researchers when performing the 
phylogenetic characterization and virulence traits of UPEC 
isolated from KTPs as well as non-KTPs and analyzed the 
clonal distribution of ESBLs-producing UPEC contain-
ing blaCTX-M gene by MLST technique found ST131 as the 
most common clone followed by ST1193. Moreover, they 
observed relatively high diversity in UPEC isolates obtained 
from KTPs in relation to non-KTPs. In terms of virulence 
traits, KTP isolates significantly differed from non-KTP iso-
lates only in terms of the prevalence of pap GI elements. In 
addition, the most frequent UPEC isolates were in phylo-
genetic group B2, followed by group D and group A [56]. 
Another research conducted in Nigeria furnished that ESBL 
production was significantly associated with the degree of 
biofilm formation but the level of resistance to ceftazidime 
does not differ among strong and moderate biofilm pro-
ducers [57]. A decade back risk factors were studied for 
ESBL-producing UPEC isolates in KTP vs. non-KTPs, and 
it was noticed that age, gender, HLA mismatches, etiology 
of chronic kidney disease, diabetes mellitus, acute rejection, 
induction treatment, and type/level of immunosuppression 
did not differ between the groups with or without ESBL-
related UTI; however, high increased incidence of ESBL-
related UTI was observed among KTP recipients, particu-
larly patients with recurrent UTI [51]. These researchers 
emphasized that prevention of the first episode is of great 
importance among KTP recipients as they found that the risk 
of ESBL-related UTI increased linearly with the number of 
UTI treatments, illustrated by an increased incidence among 

second and third UTI episodes and by the recurrence rate. 
Espinar et al. [55] concluded in their study that delayed graft 
function, diabetes mellitus, previous antibiotic exposure, 
antibiotic prophylaxis, and relapsing UTI are independent 
risk factors for acquiring infections by ESBL-producing E. 
coli and Klebsiella pneumoniae. Molecular epidemiology 
results of them showed that blaCTX-M were the most com-
mon ESBL-encoding gene, either alone or in association 
with other genes. Low eGFR (estimated glomerular filtra-
tion rate) and high blood creatinine are risk factors for UTI 
recurrence [55]. The high co-resistance to other antibiot-
ics (non-β-lactams) found in the ESBL-producing bacteria 
in UTI among KTP recipients, remains a serious clinical 
challenge. Although the level of recurrence in this study 
found for both groups was similar, the relapsing percent-
age was significantly higher in non-KTPs [55]. Explaining 
why ESBL infections increase with an increasing number of 
days patients are required to have a ureteral stent in place, 
Singh et al. [7] stated that ureteral stricture is one of the most 
common complications of a post-renal transplant. Trans-
plant recipients routinely have percutaneous stents placed 
to relieve the stricture. The length of stent placement varies 
among patients. These stents may serve as a focal point for 
biofilm production. Biofilm provides the perfect environ-
ment for bacterial growth and higher survival rates due to 
poor antibiotic penetration. Additionally, the proximity of 
various microbial genes allows for the exchange of antibi-
otic resistance plasmids [7]. Furthermore, they suggested as 
the presence of plasmid-mediated beta-lactamase is capable 
of hydrolyzing carbapenems, carbapenem-resistant Entero-
bacteriaceae must be considered when evaluating renal 
transplant recipients with recurrent UTIs caused by ESBL-
producing organisms [7]. Among Iranian renal transplant 
patients, plasmid-mediated quinolone resistance (PMQR) 
has been increasingly identified in UPEC [58].

Due to the high rate of urinary tract infection in renal 
transplantation and the results of ESBL phenotype, control 
of the spread of ESBLs-producing isolates among KTPs is 
essential [6] and is an important problem in healthcare set-
tings [48].

Phylogenetic Groups in ESBL‑Producing 
UPEC

In 2013, an additional gene target, arpA, was added to the 
three candidate markers (chuA, yjaA, and TspE4.C2) by 
Clermont et al. [59], and a quadruplex PCR assay was devel-
oped later to classify E. coli isolates into eight phylogroups 
including A, B1, B2, C, D, E, F, and clade I/II. The use of 
this method has been found to correctly assign 95% of all 
E. coli strains.
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A relationship between different E. coli phylogenetic 
groups, antimicrobial resistance, and virulence features 
has been illustrated by phylogenetic analysis. According to 
the literature, the most virulent and antimicrobial-resistant 
extraintestinal E. coli strains mainly belong to group B2 and, 
to a less extent to group D [60]. Escherichia coli sequence 
type 131 (ST131), belonging to group B2, is an important 
emerging pathogen among renal transplant recipients, with 
resistance to most β-lactam antibiotics and multiple resist-
ance, and possessing virulence factors, resistance to fluoro-
quinolones, aminoglycosides, and trimethoprim-sulfameth-
oxazole (co-resistance) and even to last-line carbapenems. 
Based on the epidemiological studies, the genomic phylog-
eny of ST131 is delineated into three clades including clade 
A (the most divergent), clade B, and clade C (or H30). Clade 
C is the largest clade of ST131 and is divided into two sub-
lineages including C1 (H30R) and C2 (H30Rx). C2 sub-line-
age is responsible for the high prevalence of CTX-M-15 pro-
duction among T131 isolates, but both of them are resistant 
to fluoroquinolones and have limited treatment options [61]. 
Most ST131 strains, with the specific O25b type, belong to 
the O25:H4 serotype. However, O16:H5 serotype of ST131 
strains has recently been identified, as well as other species 
that are not reproducible for O and H antigens. ST69, ST95, 
and ST73 strains of UPEC are also the most common causes 
of UTIs and bloodstream infections [62].

Current Treatment Options 
for Antibiotic‑Resistant and ESBL‑Producing 
UPEC

Antimicrobial Agents

Antimicrobial therapy is suitable for symptomatic UTIs but 
not for asymptomatic bacteriuria. For uncomplicated cystitis 
in adult women fosfomycin, pivmecillinam, or nitrofurantoin 
as first-line treatment was recommended by European Asso-
ciation of Urology (EAU) guidelines on urological infec-
tions in 2018. Combination therapy with amoxicillin and 
an aminoglycoside, or a second-generation cephalosporin 
plus an aminoglycoside is recommended for the treatment 
of complicated UTIs. Intravenous injection of third-genera-
tion cephalosporins is recommended for complicated UTIs 
[63]. Carbapenems such as ertapenem may be used for the 
treatment of chronic or recurrent UTIs due to ESBL-pro-
ducing ST131 strains, but since these antibiotics are one of 
our last defenses, they should be used cautiously [64]. In 
kidney transplant patients, patient intolerance, drug toxic-
ity, and the acquisition of antibiotic resistance may make 
the treatment of these patients very difficult. Therefore, it 
is important to choose an effective antibiotic to treat UTIs 
[22]. In most healthcare settings, after the kidney transplant, 

co-trimoxazole (TMP/SMX) and ciprofloxacin are used to 
prevent UTI and other infections, but in people with a history 
of allergies to these antibiotics, nitrofurantoin is replaced 
and it is also an effective antibiotic against ESBL-producing 
UPEC [2]. Recently, an increase in the antibiotic-resistant 
UPEC isolates has been reported [22], especially resistance 
towards trimethoprim/sulphamethoxazole. The use of this 
antibiotic as prophylaxis for most kidney transplant patients 
may be one of the causes of increased resistance [22]. There-
fore, due to the high prevalence of resistance to first-line 
oral antibiotics including trimethoprim-sulfamethoxazole 
(STX), amoxicillin/clavulanic acid, and ciprofloxacin (CP), 
fosfomycin-trometamol (phosphoenolpyruvate analog) is 
increasingly been considered to treat UTIs caused by mul-
tidrug-resistant pathogens in KTPs due to fewer side effects 
such as non-interference with immunosuppressive drugs and 
lack of renal toxicity [65, 66].

Mannosides and Pilicides

Mannosides are small-molecule compounds that are 
designed based on the structure of the FimH adhesin bound 
to mannose and inhibit the FimH binding to the receptor. 
Pilicides are small synthetic molecules and inhibit pilus 
assembly by inhibiting the Chaperone-Usher Pathway, 
which is responsible for surface structure formation [67, 
68]. Mannosides and pilicides have the potential to treat 
uncomplicated bladder inflammation and recurrent urinary 
tract infections and may help circumvent the rising trend of 
antibiotic-resistant bacteria [64].

Cranberry Products

The mechanism of cranberry products' action is unknown 
and disputed; nevertheless, it has been widely used for many 
years to treat and prevent urinary tract infections [63, 69, 
70]. Microbial-derived metabolites of cranberry polyphenols 
are claimed to play a role in bacterial adhesion to uroepi-
thelial cells, disabling or preventing UPEC adhesion and, 
thus, preventing bacterial colonization and the progression 
of UTIs [71].

Probiotic Bacteria

Another promising therapy considered in UTI prevention 
and treatment is the use of probiotic bacteria [72], and 
human intervention studies have evaluated the use of certain 
strains such as Lactobacillus spp. in the prevention or treat-
ment of UTIs [73]. For example, bacteriocinogenic L. lactis-
GAM217-derived bacteriocin (Bacteriocin-GAM217) has 
been to have shown an anti-biofilm and antibacterial effect 
on ESBL producing E.coli, K. pneumoniae, Citrobacter 
amalonaticus, C. diversus, and Proteus mirabilis and MBL 
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producing E. coli, Pseudomonas aeruginosa, and K. pneu-
moniae clinical isolates through the formation of pores on 
the bacterial cell wall. Moreover, bacteriocin-GAM127 with 
phytochemicals such as curcumin and cinnamaldehyde have 
been observed to display a synergistic effect on the destruc-
tion and attenuation of biofilm formation by antibiotic-resist-
ant E. coli even at low concentration by permeabilization of 
the cell membrane [74]. In addition, it has been suggested 
that combining cranberry with some probiotic strains may 
be more effective in the management of recurrent UTIs [75].

1, 8‑Cineole

1, 8-Cineole is one of the main components of rosemary vol-
atile oil (known as eucalyptol) which at the minimum inhibi-
tory concentration [MIC, 0.8% (v/v)] demonstrates bacteri-
cidal activity on planktonic E. coli ATCC35218 strain and 
also exhibits the anti-biofilm activity against MDR ESBL-
producing uropathogenic E. coli strains by causing cell death 
into the biofilm-attached and biofilm-released cells [76].

Carbon Monoxide‑Releasing Molecules or CORMs

Carbon monoxide (CO), a small gaseous molecule, pos-
sesses anti-inflammatory and antimicrobial properties with 
the ability to penetrate the cell membrane. CO-releasing 
molecules (CORMs) are one of the metal carbonyl com-
pounds that have been developed for therapeutic applications 
by releasing CO in a controlled manner. Antibacterial effects 
of CORM-2 and CORM-3 (ruthenium-based carbonyls) are 
reported in E. coli K-12 strains, Staphylococcus aureus and 
P. aeruginosa. CORMs are effective not only in near-anaer-
obic conditions [77] but, also in aerobic conditions. They 
inhibit respiration by reacting with cytochrome bd and bo′ by 
accelerating the transfer of CO into the bacterial cell (such as 
CORM-3) [78]. Another suggested mechanism for the anti-
bacterial effect of CORMs is the production of intracellular 
reactive oxygen species by CORM-2 which causes DNA 
damage and bacterial cell death. Recently it has been shown 
that CORM-2 has antibacterial effects on planktonic multid-
rug-resistant ESBL-producing UPEC isolates [79]. Accord-
ing to Charlotte Sahlberg Bang's study [78] in biofilm-like 
conditions, CORM-2 can decrease the bacterial viability of 
multidrug-resistant UPEC especially, following colonization 
of UPEC in human bladder epithelial cells.

Conclusions

To conclude, infections in renal transplant patients pose 
a problem, and UTI ranks among the most common 
infections that a recipient post-transplant encounters. 
UPEC accounts for the majority of these UTIs. ESBL 

production among UPEC has steadily been increasing in 
recent years. The role of resistant high-risk clones is a 
worrisome trend as the occurrence of multidrug-resistant 
clones may acutely compromise graft function and if left 
uncontrolled may lead to mortality. Various factors have 
been implicated in the development of UTI in transplant 
patients. Immunosuppressive conditions carry a stress-free 
increased risk for the occurrence of UTI. If UTI is sus-
pected prompt initial empiric antibiotic therapy is recom-
mended, and further thorough investigations are required 
to identify potential underlying causes of chronically 
recurring infections. One of the current challenges is the 
accurate and rapid detection of ESBL production as resist-
ance to cephalosporins may further lead to the develop-
ment of resistance to other antibiotics. Post-transplant UTI 
needs a careful revision in terms of careful and selective 
use of antibiotics. Many novel antibiotic therapies have 
been proposed along with the use of conjunctive probiot-
ics or the use of natural products. Improvements in UTI 
prophylaxis and treatment make further studies of post-
transplant UTI a necessary and rewarding area of future 
research.
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